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pH OF COTTON EMBRYOS AND SEED COATS BY 3'P NMR

embryos from any age within this interval show a pronounced
single peak of 3P resonance (Fig. 1). No resonance peaks corre-
sponding to cytoplasmic Pi signals (12, 13, 15) were observed in
any of the approximately 25 embryo spectra analyzed; very
similar spectra were observed when a single embryo was analyzed
(data not shown). In contrast, the spectra of similarly aged seed
coats often showed indications of cytoplasmic P compartments
at approximately -15 ppm (Fig. 1), where the resonance of
cytoplasmic glucose 6-P and cytoplasmic Pi would be expected.
However, noise levels in our short scans made precise interpre-
tations difficult. Ultrastructural examination ofembryos of these
ages revealed large masses of lipid and protein bodies, without
providing clues to the relative volumes ofcytoplasm and vacuole
(3, 4). We are unaware of published microscopic studies of
developing cotton seed coat tissue that might help explain the
difference in these spectra.

Tissue pH (i.e. the pH of the dominant Pi-containing com-
partment) was determined by comparing the chemical shift of
the 3'P peak to that oftissue extracts titrated to known pH values.
For any given pH, the chemical shift of embryo extracts was
slightly greater than that of seed coat extracts (Fig. 2). The
difference between these standard curves could result from dif-
ferences in other electrolytes in the two tissues (14). Using the
standard curves developed for each tissue, we found that the pH
of seed coat cells was considerably lower than that of embryo
cells (Fig. 3, upper panel). The difference was about 1.4 pH units
at 28 d after anthesis, decreasing to zero at 42 d after anthesis
(ust prior to dehiscence). This very large, age-dependent differ-
ential of pH was reflected in the pH values of aqueous extracts
of the tissues (Fig. 3, lower panel). The extracts also displayed a
large differential at younger ages, decreasing to zero around 42
d after anthesis. However, the maximum difference in this case
was about 0.8 pH units (Fig. 3, lower panel), only approximately
one-half of the maximal pH differential observed by NMR (Fig.
3, upper panel). Hendrix and Radin (8) earlier reported a maxi-
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FIG. 1. Typical 161.98 MHz 3'P-NMR spectra obtained from devel-
oping cotton seed coat (B, D) and embryo (A, C) tissues, 35 d (A, B) and
29 d (C, D) from anthesis. Spectra were obtained over a period of 5.4
min for seed coats and 0.6 min for embryos, in 2 mM Mes (pH 5.0). The
chemical shifts observed for the major peaks are: A, -15.578 ppm; B,
-16.151 ppm; C, -15.625 ppm; and D, -16.202 ppm.
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FIG. 2. Calibration curves for chemical shift (6) versus pH for cotton
embryo and seed coat tissues. Clarified homogenates of tissues were
adjusted to various pH values with small amounts of HCI or NaOH and
their 3"P-NMR spectra determined as for the intact tissue samples.
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FIG. 3. Effect ofdevelopment upon the pH ofdeveloping cotton seed
coat and embryos by 3'P-NMR (upper panel) and by combination glass
pH electrode (lower panel) in aqueous extracts.

mum differential of 0.75 pH unit in aqueous extracts of the two
tissues, and a very similar trend with development. The differ-
ence in these two measurements may be due to the compart-
mental mixing which occurs in tissue homogenization.
The resonance peaks of these embryo spectra (Fig. 1) are

slightly broader than those from seed coats or other tissues ( 15).
The relative width of the embryo signal could be due to phytate
in these cells. Phytate, a major P-component in mature seeds,
has a distinctive and broad NMR signal in the same region of
the spectrum as the embryo 31P signal (Fig. 4). Homogenizing
embryos, however, caused the 31P signal to become as sharp as
the signal from homogenized seed coats (Fig. 4). Because seed
coats do not accumulate phytate, this result argues against phy-
tate as the signal broadening agent in developing cotton embryos.
Also, adding 15 mg phytate to homogenized embryos did not
significantly broaden their 31P spectra (not shown). Neither ho-
mogenization nor addition of phytate changed the area of the
31P peak for cotton embryos (data not shown). The peak narrow-
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FIG. 4. Spectra obtained from 50 mg phytate (A), 18 intact embryos
(B), 17 homogenized embryos (C), and 18 homogenized seed coats (D).
The phytate spectrum was determined on calcium phytate dissolved in
HCI and titrated to pH 5 with NaOH. All spectra were acquired without
proton decoupling.

ing upon embryo homogenization also minimizes presumed
interference from other solutes such as paramagnetic ions as they
would be present in the homogenized extract as well. The most
likely cause of peak broadening in the embryo spectra is cellular
or structural heterogeneity.

In earlier work (8) most of the ABA in these tissues was found
in a compartment with a relatively long half-time of exchange.
It was thus termed 'vacuolar,' in analogy with the slowly exchang-
ing compartment in inorganic ion efflux experiments. The iden-
tity of this compartment was, and is still, uncertain. The vacuole
is a possible identity for this compartment, since it would have
the size, pH, and presumably sufficient Pi to give rise to the
observed signals. The literature does not suggest the vacuole as a
repository for ABA, instead assigning it to chloroplasts (9).
However, both tissues in this study lack chloroplasts. The pH of
the embryo 'vacuoles' (Fig. 3) indicates that they might serve
satisfactorily as alkaline traps for ABA, much in the manner of
chloroplasts in other tissues.
Anoxia is known to decrease cytoplasmic pH of root tips

(1, 12, 13). We did not perfuse these samples with oxygenated
buffer during spectrum acquisition. However, anoxia should
have not been a problem for two reasons. First, the chemical
shift ofvacuolar Pi is relatively resistant to anoxia (1, 15). Second,
the time for the data acquisition was kept very short. The strong
signal from embryos allowed useful spectra to be obtained in
considerably under 1 min. The Pi resonance peak from cotton
seed coats was much weaker, but useful spectra could be obtained
from this tissue within about 5 min. Scanning a sample of seed
coats for 1.1, 2.7, and 5.5 min produced no noticeable drift in
the Pi peak (cf 1) from cotton seed coats (data not shown). Five

min represented a good compromise between the need for long
runs for noise suppression, and the need for short incubations to
avoid anoxia. These times are much shorter than frequently used
in other laboratories (10, 15, 16).

In earlier work (8), we found that cotton embryos accumulate
ABA during the period of their development in which they will
germinate in vitro if cultured without ABA. The ABA concentra-
tion in the embryo during this period exceeds that in the seed
coats and there is no symplastic connection between these two
structures. Transport of this phytohormone to the embryo must
therefore occur by diffusion, apparently against its concentration
gradient. Kaiser and Hartung (9) had earlier postulated that the
protonated (ABA. H) but not the anionic (ABA-) abscisic acid
molecule could move readily across membranes. This mecha-
nism leads to accumulation of ABA in the more alkaline com-
partments ofa tissue (6, 7). The hypothesis ofKaiser and Hartung
could explain our results if a pH differential of the proper sign
and magnitude were to exist between the two tissues (i.e. if the
embryos were significantly more alkaline than the seed coats).
Although aqueous extracts of embryos were considerably more
alkaline than those of the seed coats (8), the relationship between
pH in vivo and the pH of the extracts remained unclear. Our
31P-NMR spectra now demonstrate the existence of the large pH
differential between intact embryos and seed coats in developing
cotton seeds, as earlier inferred from the pH of aqueous extracts.
Thus, these data provide strong support for the control of ABA
movement by pH gradients in germinable immature seeds. A
similar explanation has been recently invoked to explain the
level ofABA in developing Phaseolus embryos (2). Mechanisms
for maintenance of this large difference in [H+], and its role in
other physiological processes (e.g. assimilate transport from seed
coat to embryo) remain undetermined.
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